代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

#include <vector>
#include <queue>
#include <thread>
#include <mutex>
#include <condition_variable>
#include <future>
#include <functional>

class ThreadPool
{
public:
ThreadPool(size_t);

template <class F, class... Args>
decltype(auto) add_task(F &&f, Args &&...args);

~ThreadPool();

size_t get_task_count();

size_t get_active_thread_count();

private:
// need to keep track of threads so we can join them
std::vector<std::thread> workers;
// the task queue
std::queue<std::function<void()>> tasks;

// synchronization
std::mutex queueMutex;
std::condition_variable condition;
bool stop;
};

// the constructor just launches some amount of workers
inline ThreadPool::ThreadPool(size_t threads)
: stop(false)
{
for (size_t i = 0; i < threads; ++i)
workers.emplace_back(
[this]
{
for (;;)
{
std::function<void()> task;

{
std::unique_lock<std::mutex> lock(this->queueMutex);
this->condition.wait(lock,
[this]
{ return this->stop || !this->tasks.empty(); });
if (this->stop && this->tasks.empty())
return;
task = std::move(this->tasks.front());
this->tasks.pop();
}

try
{
task();
}
catch (const std::exception &e)
{
// do nothing
}
}
});
}

// add new work item to the pool
template <class F, class... Args>
decltype(auto) ThreadPool::add_task(F &&f, Args &&...args)
{
using return_type = decltype(f(args...));

auto task = std::make_shared<std::packaged_task<return_type()>>(
std::bind(std::forward<F>(f), std::forward<Args>(args)...));

std::future<return_type> res = task->get_future();
{
std::unique_lock<std::mutex> lock(queueMutex);

// don't allow enqueueing after stopping the pool
if (stop)
throw std::runtime_error("enqueue on stopped ThreadPool");

tasks.emplace([task]()
{ return (*task)(); });
}
condition.notify_one();
return res;
}

// the destructor joins all threads
inline ThreadPool::~ThreadPool()
{
{
std::unique_lock<std::mutex> lock(queueMutex);
stop = true;
}
condition.notify_all();
for (std::thread &worker : workers)
worker.join();
}

// the number of tasks currently in the thread pool.
inline size_t ThreadPool::get_task_count()
{
std::unique_lock<std::mutex> lock(queueMutex);
return tasks.size();
}

// the number of active threads in the thread pool.
inline size_t ThreadPool::get_active_thread_count()
{
std::unique_lock<std::mutex> lock(queueMutex);
return workers.size();
}